Fermion propagation through spacetime
The electron propagator is given by

$$i S_{x/s}(x) \equiv \langle 0|T[\Psi_x(x)\overline{\Psi_s}(0)]|0 \rangle$$

As we will see, have to define
 $T[\Psi(x)\overline{\Psi}(0)] = \Theta(x^0)\Psi(x)\overline{\Psi}(0) - \Theta(-x^0)\overline{\Psi}(0)\Psi(x)$
sign due to
arti-commuting nature
of Ψ

Using

$$\begin{aligned}
\mathcal{U}(x) &= \int \frac{d^{3}p}{(2\pi)^{\frac{3}{2}} \left(\frac{E_{p}}{m}\right)^{\frac{1}{2}}} \sum_{s} \left[b(p,s)u(p,s)e^{-ipx} + d^{\dagger}(p,s)v(p,s)e^{-ipx}\right], \\
& \quad ue \quad get \quad for \quad x^{\circ} > 0 \\
& \quad i \quad S(x) = \langle 0 \mid \mathcal{U}(x) \quad \overline{\mathcal{U}}(\omega) \mid 0 \rangle \\
&= \int \frac{d^{3}p}{(2\pi)^{\frac{3}{2}} \left(\frac{E_{p}}{m}\right)^{\frac{1}{2}}} \int \frac{d^{3}p'}{(2\pi)^{\frac{3}{2}} \left(\frac{E_{p'}}{m}\right)^{\frac{1}{2}}} \left[\langle 0 \mid \sum_{s,s}, u(p,s) \quad \overline{u}(p,s')e^{-ipx} \quad b \quad b^{\dagger}|0 \rangle \\
&= \int e^{(s)} \int \frac{d^{3}p}{(2\pi)^{\frac{3}{2}} \left(\frac{E_{p'}}{m}\right)^{\frac{1}{2}}} \left[\langle 0 \mid \sum_{s,s}, u(p,s) \quad \overline{u}(p,s')e^{-ipx} \quad b \quad b^{\dagger}|0 \rangle \\
&= \int e^{(s)} \int e^{ipx} \int \frac{d^{3}p'}{(2\pi)^{\frac{3}{2}} \left(\frac{E_{p'}}{m}\right)^{\frac{1}{2}}} \left[\langle 0 \mid \sum_{s,s}, u(p,s) \quad \overline{u}(p,s')e^{-ipx} \right] \\
&= \int e^{(s)} \int e^{ipx} \int \frac{d^{3}p'}{(p,s')} e^{-ipx} \int \frac{d^{3}p'}{(p,s')} e^{-ipx} \int \frac{d^{3}p'}{(p,s')} e^{-ipx} \int \frac{d^{3}p'}{(p,s')} e^{ipx} \int \frac{d^{3}p'}{(p,s')} e^{-ipx} \int \frac{d^{3}p'}{(p,s'$$

$$+ \frac{\langle 0 | d^{\dagger} \sum_{s,s'} v(p,s) \overline{u}(p|s') e^{ip \cdot x} b^{\dagger} | 0 \rangle}{= (d|0\rangle)^{\dagger} = 0}$$

$$+ \langle 0 | \sum_{s,s'} v(p,s) \overline{v}(p',s') e^{ip \cdot x} d^{\dagger} d | 0 \rangle$$

$$= \int \frac{d^{3}p}{(2\pi)^{3} (Ep_{m})} \sum_{s} u(p,s) \overline{u}(p,s) e^{-ip \cdot x}$$

$$= \int \frac{d^{3}p}{(2\pi)^{3} (Ep_{m})} \frac{p + m}{2m} e^{-ip \cdot x} \quad (1)$$
For $x^{0} < 0$, we have to compute
 $i S_{r,s}(x) = - \langle 0 | \overline{\Psi}_{s}(0) \Psi_{r}(x) | 0 \rangle$

$$= - \int \frac{d^{3}p}{(2\pi)^{3} Ep'_{m}} \sum_{s} \overline{v}_{s}(p,s) v_{s}(p,s) e^{-ip \cdot x}$$

$$= - \int \frac{d^{3}p}{(2\pi)^{3} Ep'_{m}} (\frac{p - m}{2m})_{r,s} e^{-ip \cdot x} \quad (1)$$
Pulting (i) and (1) together, we get
 $i S(x) = \int \frac{d^{3}p}{(2\pi)^{3} Ep'_{m}} \left[\Theta(x^{0}) \frac{p + m}{2m} e^{-ip \cdot x} - \Theta(x) \frac{p - m}{2m} e^{ip \cdot x} \right]$

This can be written more elegantly as

$$iS(x) = i \int \frac{d^{4}p}{(2\pi)^{4}} e^{-ip \cdot x} \frac{p + m}{p^{2} - m^{2} + is}$$

 $= \int \frac{d^{4}p}{(2\pi)^{4}} e^{-ip \cdot x} \frac{i}{p - m + is}$
To see this, note that in the complex
 $p^{2} - m + is$

p° plane the integrand has poles at

$$p^{\circ} = \pm (\overline{p}^{2} + m^{2} - i\varepsilon) = \pm (E_{p} - i\varepsilon)$$

For
$$x^{\circ} > 0$$
, the factor $e^{-ip^{\circ}x^{\circ}}$ tells us
to close the contour in the lower half-plane
 \rightarrow going around the pole + $(E_{p} - is)$
 $clockwise$, we get
 $i S(x) = (-i)i \int \frac{d^{3}p}{(2\pi)^{3}} e^{-ip \cdot x} \frac{p+m}{2E_{p}}$
For $x^{\circ} < 0$, we have to close the contour
in the upper half-plane

$$\Rightarrow i S(x) = i^{\perp} \int \frac{d^{3}p}{(2\pi)^{3}} e^{+iEpx^{\alpha}+i\vec{p}\cdot\vec{x}} \\ \times \frac{1}{-2E_{p}} \left(-E_{p}y^{\alpha}-\vec{p}\cdot\vec{y}+m\right)$$

$$flipping \vec{p} \quad we \quad get \\ i S(x) = - \int \frac{d^{3}p}{(2\pi)^{3}} e^{i\vec{p}\cdot\vec{x}} \frac{1}{2E_{p}} \left(E_{p}y^{\alpha}-\vec{p}\cdot\vec{y}-m\right) \\ = - \int \frac{d^{3}p}{(2\pi)^{3}} e^{i\vec{p}\cdot\vec{x}} \frac{1}{2E_{p}} \left(\vec{p}-m\right)$$

$$To \quad summarize, \quad we \quad see \quad that \quad the \\ momentum \quad space \quad fermion \quad propagator \\ has the \quad elegant \quad form \\ \quad i S(p) = \frac{i}{\vec{p}-m+i\Sigma}$$

$$\Rightarrow \quad S(p) \quad is \quad the \quad inverse \quad of \quad the \\ Dirac \quad operator, \quad j'wat \quad as \quad the \\ scalar \quad boson \quad propagator \\ D(\kappa) = \frac{1}{\kappa^{2}-m^{2}+i\Sigma} \quad is \quad the \quad inverse \\ of \quad the \quad Klein-Gordon \quad operator \quad \kappa^{2}m^{2}$$

Vacuum energy: By definition, Vacuum fluctuations accur when there are no sources to produce particles -) for free scalar field theory we get $Z = \int \mathcal{D} \varphi e^{i \int d^4 x \frac{1}{2} \left[(\partial \varphi)^2 - m^2 \varphi^2 \right]}$ $= C\left(\frac{1}{\det\left[\partial^{2}+m^{2}\right]}\right)^{\frac{1}{2}} = Ce^{-\frac{1}{2}\operatorname{Tr}\log\left(\partial^{2}+m^{2}\right)}$ (1) where we used the identity $det M = e^{\operatorname{Tr} \log M}$ (2)(exercise) Recall that Z= <0/e-iHT/0> (with T-300) = e^{-iEI} energy of vacuum

Zet us now evaluate the trace in (1)
this can be done by noting

$$Tr G = \int d^{4}x \langle x | G | x \rangle$$

 $= \int d^{4}x \int \frac{d^{4}k}{(2\pi)^{4}} \int \frac{d^{4}q}{(2\pi)^{4}} \langle x|k \rangle \langle k|G|q \rangle \langle q|x \rangle$
 $\rightarrow we get :$
 $ET = \frac{1}{2} VT \int \frac{d^{4}k}{(2\pi)^{4}} \log (k^{2} - m^{2} + i\epsilon) + A$ (3)
where A is an infinite constant
corresponding to the multiplicative
factor C in (1)
Zet us define m' by writing
 $A = -\frac{1}{2} VT \int \frac{d^{4}k}{(4\pi)^{4}} \log (k^{2} - m^{2} + i\epsilon)$
 $\rightarrow (3)$ gives difference of vacuum energies
of particles with mass m and m'
 $\Rightarrow \frac{E}{V} = -\frac{i}{2} \int \frac{d^{4}k}{(2\pi)^{4}} \log \left[\frac{k^{2} - m^{2} + i\epsilon}{k^{2} - m^{2} + i\epsilon} \right]$

$$= -\frac{i}{2} \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d\omega}{2\pi} \log \left[\frac{\omega^{2} - \omega_{k}^{2} + i\varepsilon}{\omega^{2} - \omega_{k}^{2} + i\varepsilon} \right]$$
where $\omega_{k}^{1} = \pm \sqrt{k^{2} \pm m^{2}}$
Integrating by parts, we get
$$\int \frac{d\omega}{2\pi} \log \left[\frac{\omega^{2} - \omega_{k}^{2} + i\varepsilon}{\omega^{2} - \omega_{k}^{12} + i\varepsilon} \right]$$

$$= -2 \int \frac{d\omega}{2\pi} \omega \left[\frac{\omega}{\omega^{2} - \omega_{k}^{2} + i\varepsilon} - \frac{\omega}{\omega^{2} - \omega_{k}^{12} + i\varepsilon} \right]$$

$$= -i2 \omega_{k}^{2} \left(\frac{1}{-2\omega_{k}} \right) - (\omega_{k} \rightarrow \omega_{k}')$$

$$= \pm i \left(\omega_{k} - \omega_{k}' \right)$$
Restoring t_{1} , we then arrive at
$$\frac{E}{V} = \int \frac{d^{3}k}{(2\pi)^{3}} \left(\frac{1}{2} t \omega_{k} - \frac{1}{2} t \omega_{k}' \right) \quad (4)$$

$$\rightarrow \text{ this matches with the result}$$

$$previowsly obtained using the operator
$$formalism (see § 1.1)$$$$

A peculiar sign for fermions
Recall that for fermions, the operator
formalism gave a different sign
(see § 2.3)
Question: How can we obtain this
from the path integral formalism?
Recall that the origin of the sign
lies in Gaussian integration result

$$\int_{-\infty}^{\infty} dx e^{-\frac{1}{2}ax^2} = \int_{-\frac{1}{2}}^{\frac{1}{2}} = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-\frac{1}{2}} \log a$$

 \rightarrow need to find new type of integral
giving $e^{+\frac{1}{2}\log a}$
We postulate, following Grassmann (Ath cathing),
the existence of a new Kind of number,
called Grassmann or anticommuting number:
 $\gamma \tilde{f} = -\tilde{f}N$
 $\rightarrow N^2 = 0$

functions of
$$\gamma$$
 are of general form:
 $f(\gamma) = a + b\gamma$
postulate translation inv. of integral:
 $\int d\gamma f(\gamma + \tilde{\gamma}) = \int d\gamma f(\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma (a + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma (a + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma (a + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma (a + b(\gamma + \tilde{\gamma})) = \int d\gamma f(\alpha + b\gamma)$
 $= \int d\gamma f(\alpha + b(\gamma + b(\gamma + b\gamma)) = \int d\gamma f(\alpha + b(\gamma + b(\gamma$